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ABSTRACT: Reported here are the isolation, structural
characterization, and decomposition kinetics of the four-
coordinate pentachloroethyl nickel complex, NiCl-
(CCl,CCl,) (CNArMes?), (ArMe? = 2,6-(2,4,6-
Me,C¢H,),C¢H,). This complex is a unique example of
a kinetically persistent f-chloroalkyl in a system relevant to
coordination—insertion polymerization of polar olefins.
Kinetic analysis of NiCI(CCLCCl;)(CNAr**?), decom-
position indicates that p-chloride (f-Cl) elimination
proceeds by a unimolecular mechanism that does not
require initial dissociation of a CNArM*? ligand. The
results suggest that a direct §-Cl elimination pathway is
available to four-coordinate, Group 10 metal vinyl chloride
polymerization systems.

Investigations into the formation and decomposition of f-
chloroalkyl ligands have been central to the ongoing quest for
a coordination—insertion polymerization process for vinyl
chlorides.'~ It is now well established that -chloroalkyl ligands
are susceptible to rapid and irreversible p-chloride (f-Cl)
elimination and that this mode of decomposition deactivates a
potential single-site polymerization catalyst toward subsequent
insertion of other vinyl chloride or olefin monomers.*” The
origin of facile #-Cl elimination from p-chloroalkyl ligands has
been traced to the differences between metal—carbon and
metal—chlorine bond strengths.” For Lewis acidic early transition
metals, formation of a strong M-CI linkage with attendant 7-
donor interactions provides a substantial driving force for facile
B-Cl elimination.*>®® In late transition metal polymerization
systems, where the M—C and M—CI bond strengths are less
disparate,'®™"? the driving force for -Cl elimination from /-
chloroalkgl ligands can be attenuated relative to early metal
systems.1

While no efficient polymerization system has been identified in
which $-Cl elimination is completely inhibited, several strategies
aiming to overcome this challenge have been reported. These
efforts have centered on the use of four-coordinate, Group 10
metal centers and ligand frameworks that seek to destabilize the
transition state for 5-Cl elimination® or accelerate olefin binding/
insertion to a coordinatively unsaturated f-chloroalkyl com-
plex.>>">'* More recently, efforts have focused on systems that
encourage rapid 2,1-addition of vinyl chloride into a Group 10
metal—alkyl bond and low rates of subsequent -H elimination/
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reinsertion (i.e., chain walking) to obviate the formation of a -
chloroalkyl ligand."*~"" In the mechanistic scenarios guiding
these studies, it is assumed that syn-f-Cl elimination proceeds to
an open coordination site within the basal plane of a nominally
14e™, T-shaped coordinativelzr unsaturated f-chloroalkyl com-
plex (Scheme 1, Path A).>"*" This pathway has been suggested

Scheme 1. Generalized Mechanisms for #-Cl Elimination in
Square-Planar Group 10 Metal Complexes with and without
Ligand Dissociation
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despite the fact that, to date, four-coordinate, Group-10 metal -
chloroalkyl complexes have not been isolated or spectroscopi-
cally observed in solution. Indeed, only a few transition metal -
chloroalkyl complexes have been isolated, but none in a system
directly relevant to olefin polymerization.'®~>°

Accordingly, herein we present the synthesis and isolation of a
f-chloroalkyl complex of square-planar nickel. In addition, we
present kinetic decomposition data indicating that an open
coordination site within the basal plane of a square-planar
complex is not required for #-Cl elimination (Scheme 1, Path B).
Our results suggest that significant challenges still remain for the
discovery of a viable vinyl chloride coordination—insertion
polymerization system with late transition metal catalysts,
especially when pathways to the formation of S-chloroalkyls
are facile. Importantly, the low-migratory aptitude*' ~>° of the
perchloroethyl group in our system allows for the study of -Cl
elimination in the absence of competing alkyl-group insertion
processes.

We previously reported the synthesis and characterization of
the zero-valent, nickel bis-m-terphenyl isocyanide complex
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Ni(COD)(CNAr™*?), (1, COD = 1,5-cyclooctadiene; Ar™* =
2,6-(2,4,6-Me3C4H,),C4H;).2® Treatment of 1 with 1.0 equiv of
hexachloroethane (C,Cls) in n-pentane solution at room
temperature leads to the release of COD and formation of
both the pentachloroethyl-chloride complex, NiCl(CClL,CCl,)-
(CNArMe2), (2), and the dichloride complex,
NiCL,(CNAr™*?), (3), in a 4:1 ratio as determined by 'H
NMR spectroscopy (Scheme 2). Dichloride 3 can be completely

Scheme 2. Synthesis and Decomposition of Complex 2
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removed from the mixture by an acetonitrile wash, providing
pure, yellow NiCI(CClL,CCl;) (CNArM*?), (2) in 79% yield.*” In
CDCI, solution, 2 gives rise to a single set of ArM®? resonances,
thereby indicating a trans disposition of isocyanide ligands and
rapid rotation about the C—Ni bonds. In addition, the *C{'H}
NMR spectrum of 2 (CDCl,) features resonances centered at
66.1 and 88.1 ppm, which are assigned to the a-CCl, and $-CCl,
carbon atoms, respectively, of the pentachloroethyl ligand.
Notably, these resonances are considerably upfield of the
BC{'H} resonance for hexachloroethane (5§ = 1054 ppm,
CDCl;), which is consistent with ligation of an ethyl group to a
late transition metal center.

Vapor diffusion of n-pentane into a saturated fluorobenzene
solution of NiCl(CCl,CCl;)(CNAr™*?), (2) at —35 °C
provided single crystals of 2 suitable for analysis by X-ray
diffraction. The molecular structure of 2 is shown in Figure 1 and
confirms the structural assignment made from solution NMR
spectroscopy. In the solid state, the pentachloroethyl unit in 2
adopts a staggered conformation and is located in the cleft
formed by the mesityl rings of the two CNAr™** ligands. Most

notably, there are no close contacts between the -Cl atoms and
the Ni center in the solid-state structure of NiCI(CCl,CCl,)-
(CNA™*2), (2). The Ni—Cl4 and Ni—CIS distances are
3.3746(16) and 3.4507(14) A, respectively, which are signifi-
cantly greater than the most reasonable range for the sum of the
covalent radii between Ni and Cl (r.,,(Ni) + 7.,,(Cl) = 2.09—
2.26 A).”® In addition, the chlorine-atom Cl6 is positioned anti
with respect to the Nil center along the C3—C4 bond vector and
is likewise noninteracting (4.602(2) A). Interestingly, however,
there are close, sub-van der Waals (vdW) contacts between both
the a-Cl and $-Cl atoms of the pentachloroethyl ligand and the
m-edge carbons of the proximal mesityl rings of the CNAr™e>
ligands (Figure 1; Z(rqw(Cl) + fiaw(Curomaic)) = 3.50—3.64
A).29’30 These contacts, which range from 3.234—3.515 A, are
undoubtedly weak if present. However, they may potentially
contribute to the stability of NiCI(CCl,CCl;) (CNAr¥*?), (2) in
solution and upon crystallization as such, chlorine-to-7-edge
interactions have been documented to energetically enhance the
overall dockin% of chloro-substituted drug candidates to enzyme
active sites.>' *

Although a limited number of f-chloroalkyl complexes have
been isolated, none have been shown to decompose by a well-
defined $-Cl elimination process.'® > Furthermore, in systems
where facile intramolecular f$-Cl elimination is inferred, the
corresponding B-Cl alkyl intermediates have not been
spectroscopically observed.*"%®'* It is therefore significant that
while isolable, NiCI(CCL,CCl,)(CNAr™*?), (2) can be readily
observed to decompose in a manner consistent with intra-
molecular $-Cl elimination. Heating of either C4Dy4 or CDCly
solutions of pure NiCl(CCLCCl;)(CNA™*?), (2) at 75 °C
results in the formation of the dichloride complex,
NiCL(CNAr™*2), (3), and small quantities (ca. 10%) of free
CNAr™*? ligand as determined by "H NMR spectroscopy.
Analysis of the thermolysis mixture by GCMS and “C{'H}
NMR spectroscopy indicated the formation of tetrachloro-
ethylene (Cl,C=CCl,; TCE) in 91 + 7% yield (average of S
runs), thereby suggesting that the formation of dichloride 3
proceeds by a pS-Cl elimination mechanism. Importantly,
chloroalkane products are not observed after thermolysis
(GCMS and *C{'H} NMR), which indicates that radical-type,
homolytic cleavage of the Ni—C,,; linkage is not an operative
decomposition pathway for NiCl(CCL,CCl;)(CNArM*?), (2).
In addition, the free CNArMes? generated during this
decomposition process likely arises from thermally induced

Figure 1. (A) Molecular structure of pentachloroethyl complex 2. (B) Alternative view of complex 2 highlighting sub-vdW Cl-to-z-arene interactions
(distances in A). (C) Molecular structure of the palladium #*TCE complex 6.
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isocyanide dissociation from NiCl,(CNAr™*?), (3) concomitant
with the formation of [NiCl,(CNAr"*?)], aggregates. As we
have previously shown, medium-valent copper-, cobalt- and
molybdenum-chloride fragments form particularly labile inter-
actions with m-terphenyl isocyanides, which lead to facile
isocyanide dissociation processes in solution.*>™>” Thermolysis
studies on pure NiCL,(CNAr™*?), (3) in C¢D¢ and CDCl, at 75
°C were consistent with this suggestion and revealed the
formation of small quantities of free CNAr™*? (ca. 10—15%)
over the course of 2—3 h.

The decomposition of NiCl(CCL,CCl,) (CNAr™*?), (2) can
be readily monitored by "H NMR spectroscopy as a function of
time and temperature in CDCl, solution. At 50 °C, 6 and 12 mM
solutions of 2 decay reproducibly, within error, with similar
observed rate constants (Table S2.3, Supporting Information),
thereby indicating an overall first-order process. Eyring analysis
of 6 mM solutions of 2 over the temperature range 30—60 °C
resulted in activation parameters of AH* = 19(2) kcal/mol and
AS* = —16(6) cal/mol-K. The negative AS* of activation for this
reaction is particularly noteworthy and indicates an ordered
transition state that is inconsistent with a rate-limiting ligand-
dissociation event. This suggestion is further corroborated by the
fact that the decomposition of 2 is not measurably affected by the
addition of up to 8 equiv of free CNArM*? (Table 1).**

Table 1. Observed Rate Constants (k) for the Decay of
Complex 2 (6 mM) in the Presence of Various Additives at 50
°C in CDCI,

equivalents/concentration (mM)

additive additive kgps (s7) error (s7!)
none 1.4 x 1074 6.8 X 107°
CNAMe2 0.5/3 L1x107*  17x107°
CNAM2 1.0/6 1.0x 107 54x10°¢
CNAMes? 4.0/24 25%107" 49x107°
CNAM2 8.0/48 30x 107 86x107°
1-hexene 16.0/96 83%x10° 62x107¢
TCE 16.0/96 22%x107*  48x107¢

Accordingly, the kinetic data for 2 indicate that $-Cl elimination
may not require an in-plane, open coordination site in Group 10
metal polymerization systems. Instead, intramolecular S-Cl
elimination may additionally proceed to the apical site of a 16
e”, square-planar complex. Such a direct transfer mechanism
(Scheme 1, Path B), which does not require ligand dissociation,
indicates that efforts to increase the rate of olefin binding to a
coordinatively unsaturated Group 10 f-chloroalkyl complex may
not adequately prevent facile $-Cl elimination. Therefore, the
only systems appropriate for coordination—insertion polymer-
ization of vinyl chlorides may be those in which the formation of
B-chloroalkyl ligands is completely circumvented.'>™"”

With respect to direct transfer of a chloride to the apical site of
square-planar Ni, it is important to note that many five-
coordinate NiX,L, (X = halide) complexes have been reported in
the Cambridge Structural Database (CSD; 146 examples; see the
Supporting Information). Indeed, when only monodentate L-
type ligands are present, structurally characterized NiX,L;
complexes adopt a trigonal-bipyramidal coordination environ-
ment (average 75 = 0.75;>” 10 examples) with equatorial halide
ligands. On this basis, we contend that the unobserved
dichloride-olefin complex, NiCl,(7*-C,Cl,)(CNArMe?),
(Scheme 3), is a potentially viable intermediate in the
decomposition of pentachloroethyl 2 and decays further by

Scheme 3. Proposed Mechanism of -Cl Elimination in
Complex 2

—Cl,C=CCl,

dissociation of TCE to dichloride 3. In addition, the
decomposition of 2 at 50 °C is not affected by the presence of
excess TCE or 1-hexene (Table 1). These observations provide
additional evidence for rate-determining $-Cl elimination from 2
and suggest that the steric properties of the CNAr™*? ligands
prevent association of olefin substrates such that the rate of 5-Cl
elimination is not affected.

As a complement to the four-coordinate Ni system
represented by 2, we have also surveyed a related Pd isocyanide
system for its ability to provide an isolable f-chloroalkyl complex.
Treatment of the Pd(0) bis-isocyanide complex, Pd(CNArP*??),
(4, ArPPP? = 2,6-(2,6-(i-Pr),C4H;),CeH;),* with C,Clg (1.0
equiv) at room temperature leads rapidly to the Pd(II) dichloride
complex, trans-PdCL,(CNAr"*?), (5). However, when this
experiment is repeated at low temperature (ca. —100 °C), an
equimolar mixture of dichloride 5 and the #*TCE complex,
Pd(*-C,Cl,) (CNAr""?P?), (6, Scheme 4, Figure 1), is obtained
along with 0.5 equiv of unreacted C,Cls. An intermediate
pentachloroethyl complex is not spectroscopically observed
during this reaction, but the interception of Cl,C=CCl, by the
Pd(CNArPPP?), fragment suggests that a S-Cl elimination
process is likely operative. Furthermore, treatment of Pd-

Scheme 4. Reaction between Complex 4 and C,Clg

1.0 C,Cls

n-CsHy,
-100°C
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(CNArP?P?), with 1 equiv of C,Cly at low temperature in the
presence of S equiv of free CNAr”*P* does not alter the product
distribution or allow for the observation of an intermediate
pentachloroethyl complex. This finding provides circumstantial
evidence that isocyanide dissociation is not required prior to $-Cl
elimination. Importantly, it has been proposed that five-
coordinate, square-pyramidal Pd(II) complexes can serve as
fleeting intermediates during methacrylate/ethylene copolymer-
ization catalyzed by Pd(II) a-diimine complexes.”*"** This
suggestion and the results presented here indicate that facile
chloride-transfer pathways are accessible to four-coordinate,
Group 10 metal S-chloroalkyl complexes without a prior ligand
dissociation event.
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